福彩3d字谜图谜总汇图|福彩3d画谜
您現在的位置: 范文先生網 >> 教學論文 >> 數學論文 >> 正文

研究突發事件——數學金融學的重要課題

時間:2006-11-21欄目:數學論文

繼1997年東南亞金融危機后,1998年美國又發生了長期資本管理(LTCM)基金事件。兩者均由突發事件所引起,造成了震撼全球的金融危機。突發事件在金融領域中具有不容忽視的影響,它是數學金融學的一個重要課題。

從LTCM事件談起

1997年亞洲爆發了震撼全球的金融危機,至今仍余波蕩漾。究其根本原因,可說雖然是“冰凍三尺,非一日之寒”,而其直接原因卻在于美國的量子基金對泰國外行市場突然襲擊。1998年9月爆發的美國LTCM基金危機事件,震撼美國金融界,波及全世界,這一危機也是由于一個突發事件----俄羅斯政府宣布推遲償還短期國債券所觸發的。

LTCM基金是于1993年建立的“對沖”(hedge)基金,資金額為35億美元,從事各種債券衍生物交易,由華爾街債券投資高手梅里韋瑟(J.W.Meriwether)主持。其合伙人中包括著名的數學金融學家斯科爾斯(M.S.Scholes)和默頓(R.C.Merton),他們參與建立的“期權定價公式”(即布萊克-斯科爾斯公式)為債券衍生物交易者廣泛應用。兩位因此獲得者1997年諾貝爾經濟學獎。LTCM基金的投資策略是根據數學金融學理論,建立模型,編制程序,運用計算機預測債券價格走向。具體做法是將各種債券歷年的價格輸入計算機,從中找出統計相關規律。投資者將債券分為兩類:第一類是美國的聯邦公券,由美國聯邦政府保證,幾乎沒有風險;第二類是企業或發展中國家征服發行的債券,風險較大。LTCM基金通過統計發現,兩類債券價格的波動基本同步,漲則齊漲,跌則齊跌,且通常兩者間保持一定的平均差價。當通過計算機發現個別債券的市價偏離平均值時,若及時買進或賣出,就可在價格回到平均值時賺取利潤。妙的是在一定范圍內,無論如何價格上漲或下跌,按這種方法投資都可以獲利。難怪LTCM基金在1994年3月至1997年12月的三年多中,資金增長高達300%。不僅其合伙人和投資者發了大財,各大銀行為能從中分一杯羹,也爭著借錢給他們? 率筁TCM基金的運用資金與資本之比竟高達25:1。

天有不測風云!1998年8月俄羅斯政府突然宣布推遲償還短期國債券,這一突發事件觸發了群起拋售第二類債券的狂潮,其價格直線下跌,而且很難找到買主。與此同時,投資者為了保本,紛紛尋求最安全的避風港,將巨額資金轉向購買美國政府擔保的聯邦公債。其價格一路飛升到歷史新高。這種情況與LTCM計算機所依據的兩類債券同步漲跌之統計規律剛好相反,原先的理論,模型和程序全都失靈。LTCM基金下錯了注而損失慘重。雪上加霜的是,他們不但未隨機應變及時撤出資金,而是對自己的理論模型過分自信,反而投入更多的資金以期反敗為勝。就這樣越陷越深。到9月下旬LTCM基金的虧損高達44%而瀕臨破產。其直接涉及金額為1000億美元,而間接牽連的金額竟高達10000億美元!如果任其倒閉,將引起連鎖反應,造成嚴重的信譽危機,后果不堪設想。

由于LTCM基金虧損的金額過于龐大,而且涉及到兩位諾貝爾經濟學獎德主,這對數學金融的負面影響可想而知。華爾街有些人已在議論,開始懷疑數學金融學的使用性。有的甚至宣稱:永遠不向由數學金融學家主持的基金投資,數學金融學面臨挑戰。

LTCM基金事件爆發以后,美國各報刊之報道,評論,分析連篇累牘,焦點集中在為什么過去如此靈驗的統計預測理論竟會突然失靈?多數人的共識是,布萊克-斯科爾斯理論本身并沒有錯,錯在將之應用于不適當的條件下。本文作者之一在LTCM事件發生之前四個月著文分析基于隨機過程的預測理論,文中將隨機過程分為平穩的,似穩的以及非穩的三類,明確指出:“第三類隨機過程是具有快變的或突變達的概率分布,可稱為‘非穩隨機過程’。對于這種非穩過程,概率分布實際上已失去意義,前述的基于概率分布的預測理論完全不適用,必須另辟途徑,這也可以從自然科學類似的情形中得到啟發。突變現象也存在于自然界中,……”此次正是俄羅斯政府宣布推遲償還短期國債券這一突發事件,導致了LTCM基金的統計預測理論失靈,而且遭受損失的并非LTCM基金一家,其他基金以及華爾街的一些大銀行和投資公司也都損失不貲。

經典的布萊克‐斯科爾斯公式

布萊克‐斯科爾斯公式可以認為是,一種在具有不確定性的債券市場中尋求無風險套利投資組合的理論。歐式期權定價的經典布萊克‐斯科爾斯公式,基于由幾個方程組成的一個市場模型。其中,關于無風險債券價格的方程,只和利率r有關;而關于原生股票價格的方程,則除了與平均回報率b有關以外,還含有一個系數為σ的標準布朗運動的“微分”。當r,b,σ均為常數時,歐式買入期權(European call option)的價格θ就可以用精確的公式寫出來,這就是著名的布萊克‐斯科爾斯公式。由此可以獲得相應的“套利”投資組合。布萊克‐斯科爾斯公式自1973年發表以來,被投資者廣泛應用,由此而形成的布萊克‐斯科爾斯理論成了期權投資理論的經典,促進了債券衍生物時常的蓬勃發展。有人甚至說。布萊克‐斯科爾斯理論開辟了債券衍生物交易這個新行業。

筆者以為,上述投資組合理論可稱為經典布萊克‐斯科爾斯理論。它盡管在實踐中極為成功,但也有其局限性。應用時如不加注意,就會出問題。

局限性之一:經典布萊克‐斯科爾斯理論基于平穩的完備的市場假設,即r,b,σ均為常數,且σ>0,但在實際的市場中它們都不一定是常數,而且很可能會有跳躍。

局限性之二:經典布萊克‐斯科爾斯理論假定所有投資者都是散戶,而實際的市場中大戶的影響不容忽視。特別是在不成熟的市場中,有時大戶具有決定性的操縱作用。量子基金在東南亞金融危機中扮演的角色即為一例。在這種情況下,b和σ均依賴于投資者的行為,原生股票價格的微分方程變為非線性的。

經典布萊克‐斯科爾斯理論基于平穩市場的假定,屬于“平穩隨機過程”,在其適用條件下十分有效。事實上,期權投資者多年來一直在應用,LTCM基金也確實在過去三年多中賺了大錢。這次LTCM基金的失敗并非由于布萊克‐斯科爾斯理論不對,而是因為突發事件襲來時,市場變得很不平穩,原來的“平穩隨機過程"變成了“非穩隨機過程”。條件變了,原來的統計規律不再適用了。由此可見,突發事件可以使原本有效的統計規律在新的條件下失效。

突發實件的機制

研究突發事件首先必須弄清其機制。只有弄清了機制才能分析其前兆,研究預警的方法及因此之道。突發事件并不限于金融領域,也存在于自然界及技術領域中。而且各個不同領域中的突發事件具有一定的共性,按照其機制可大致分為以下兩大類。

 

“能量”積累型 地震是典型的例子。地震的發生,是地殼中應力所積累的能量超過所能承受的臨界值后突然的釋放。積累的能量越多,地震的威力越大。此外,如火山爆發也屬于這一類型。如果將“能量”作廣義解釋,也可以推廣到社會經濟領域。泡沫經濟的破滅就可以看作是“能量“積

累型,這里的“能量”就是被人為抬高的產業之虛假價值。這種虛假價值不斷積累,直至其經濟基礎無法承擔時,就會突然崩潰。積累的虛假價值越多,突發事件的威力就越大。日本泡沫經濟在1990年初崩潰后,至今已九年尚未恢復,其重要原因之一就是房地產所積累的虛假價值過分龐大之故。

 

“放大”型 原子彈的爆發是典型的例子。在原子彈的裂變反應中,一個中子擊中鈾核使之分裂而釋放核能,同時放出二至傘個中子,這是一級反應。放出的中子再擊中鈾核產生二級反應,釋放更多的核能,放出更多的中子……。以此類推,釋放的核能及中子數均按反應級級數以指數放大,很快因起核爆炸。這是一種多級相聯的“級聯放大”,此外,放大電路中由于正反饋而造成的不穩定性,以及非線性系統的“張弛”震蕩等也屬于“放大”型。這里正反饋的作用等效于級聯。在社會、經濟及金融等領域中也有類似的情形,例如企業間達的連鎖債務就有可能導致“級聯放大”,即由于一家倒閉而引起一系列債主的相繼倒閉,甚至可能觸發金融市場的崩潰。這次LTCM基金的危機,如果不是美國政府及時介入,促使15家大銀行注入35億美元解困,就很可因LTCM基金倒閉而引起“級聯放大”,造成整個金融界的信用危機。

金融界還有一種常用的術語,即所謂“杠桿作用”(leverage)。杠桿作用愿意為以小力產生大力,此處指以小錢控制大錢。這也屬于“放大”類型。例如LTCM基金不僅大量利用銀行貸款造成極高的“運用資金與資本之比”,而且還利用期貨交易到交割時才需付款的規定,大做買空賣空的無本交易,使其利用“杠桿作用”投資所涉及的資金高達

[1] [2] 下一頁

下頁更精彩:1 2 3 4 下一頁


福彩3d字谜图谜总汇图